EEL 4744C: Microprocessor Applications

Lecture 6

Part 2

MC68HC12 Parallel I/O

Reading Assignment

• Software and Hardware Engineering (new version): Chapter 11

Or

• SHE (old version): Chapter 7

And

• M68HC12 Data Sheet: Chapter 1 (1.6.8 - end), Chapter 5 and 6

Operating Modes (1)

• Selected by BKGD, MODA, MODB pins when RESET* is applied (total 8, special modes allow greater access to protected control registers)

• Normal single-chip mode
 – All I/O and memory contained within device
 • HC12B32: 32KB EEPROM, 1KB RAM
 – Self-contained except for clock source and reset circuit
 – Pros: external interfaces do not have to be designed
 – Cons: RAM capacity is quite limited and may not fit large applications

Programmer’s I/O Model

• All I/O and control of I/O is performed using 512 control registers

 • Initially mapped to addresses $0000-$01FF (but may be changed via writing to special register)

 • Except for a few exceptions, most I/O ports require initialization before use via programming bits in the control registers

HC12 Parallel I/O Ports

• I/O ports can be accessed just like memory (e.g. memory mapped I/O, can use various addressing modes)

 REGS: EQU $0000; Register Base address
 PORTB: EQU $01; Offset to PORTB
 ... Read Port B
 lax PORTB ; Direct Addressing
 lax PORTB, x ; Indexed
 lax [VECTOR, x] ; Indexed-Indirect
 ... VECTOR: DC.W PORTB ; Address of PORTB

HC12B32 Parallel I/O Ports

• Ports A and B used for I/O in single-chip mode, or multiplexed external address and data bus pins in expanded mode

 • Port E used as 6 I/O lines plus IRQ* and XIRQ* interrupt pins in single-chip mode; control signals in expanded modes (more later)

 • Port S used as 8 I/O lines (default), or one SCI (2 lines), one SPI (4 lines), and 2 I/O lines (more later)

 • Port T used as 8 I/O lines (default) or 8 timer bits (more later)

 • Port AD may be 8-bit input port (default) or used for 8 analog inputs to on-chip A/D converter (more later)
HC12 Parallel I/O Ports

• Ports C, D, F, G, H, J are not available on HC12B32 (they may appear in the examples in the textbook or lecture)
 – Read SHE (old version) pp 169-179 to obtain basic information
• We will learn ports E, S, T, and AD as well as the corresponding control bits in great detail later

Data Direction Registers

• Used to control input or output use of bits in a port (1=output, 0=input)
• When CPU reset, all registers (except a few such as in Port E) placed in input mode
• If port a mixture of input and output bits:
 – Writing to port affects only those set as outputs
 – Reading from port returns values on input bits as well as last value(s) on output bits

Data Direction Registers Example

```
PORTD: EQU 5       ; PORTD address
DDRD: EQU 7       ; Data Direction Reg
OBITS: EQU %11110000 ; Bits to be output:
                 ;  bset DDRD,OBITS ; Set direction register
                 ; - - - -
                 ; Output data to bits 7-4
                 ; ldaa PORTD
                 ; Read data on bits 3-0
                 ; ldaa PORTD

PORTC: EQU 6       ; PORTC address
DDRC: EQU 8       ; Data Direction Reg
OBITS: EQU %11110000 ; Bits to be output:
                 ;  bset DDRC,OBITS ; Set direction register
                 ; - - - -
                 ; Output data to bits 7-4
                 ; ldaa PORTC
                 ; Read data on bits 3-0
                 ; ldaa PORTC
```

Pull-up Control and Reduced Drive

• Good design practice to tie unused input pins to either logic-1 or logic-0
• HC12 provides Pull-Up Control Register (PUCR) to enable pull-up resistors on any ports configured as inputs
 – on reset, all pull-up resistors are enabled
• RDRIV (Reduced Drive of I/O Lines): reduce the drive level of output pins for power saving and lower RFI (disabled on reset)

Writing HC12 I/O Software

• Initialization: set up the function of the ports and the direction of data flow
• Data input/output: read/write data
• Synchronization:
 – Real-time synchronization (e.g. delay loop)
 – Polled I/O
 – Interrupt (more later)

Polled I/O Example
Polled I/O Assembly Code

PORTJ: EQU $28; Port J address
PORTH: EQU $24; Port H address
DDRH: EQU $25; Port H data direction
BIT0: EQU %00000001
BIT1: EQU %00000010
O_BITS: EQU %00001111

: ; Initialization
; Set up PORTH<3:0> to be output bit
; Output data to Port H
; Wait until the status bit, Port J, Bit-1 is 1
; Now can output the data

; Input data from Port H
; Wait until the status bit, Port J, Bit-1 is 1
; Now can input the data

Hardware Handshaking I/O

- No dedicated h/w for this
 - use general-purpose I/O bits plus s/w similar to polling

- Unlike polling, handshaking goes both ways

Hardware Handshaking I/O Example

![Hardware Handshaking I/O Example](image)

Handshaking I/O Assembly Code

```assembly
bksio.asm  Assembled with CARM 03/20/1986 23:35 PASM 1

0000 1 PORTJ, RDI, 328 ; Port J address
0002 2 DDRJ, RDI, 224 ; Data direction Port J
0004 3 PORTJ, RDI, 244 ; Port J data
0006 4 PORTH, RDI, 246 ; Port H data
0008 5 BIT0, RDI, 10000001
000A 6 BIT1, RDI, 10000010
000C 7 BIT2, RDI, 10000011
000E 8 bit 0, RDI, 10000000

10 ; Initialization
0010 0C25F0 ; Start
0012 0C260A ; Port H output
0014 0C260A ; Port J output
0016 0C2626 ; Start
0018 0C2601 ; Handshaking
001A 0C260A ; Handshaking
001C 0C260A ; Handshaking
001E 0C260A ; Handshaking

14 ; Ready
16 ; Handshaking output data to Port H
18 ; Wait until the status bit, Port J, Bit-1 is 1
0020 0C3001 ; Start
0022 0C260A ; Wait
0024 0C260A ; Wait
0026 0C260A ; Wait
0028 0C260A ; Wait

20 ; Now can output the data
002A 0C402A ; Port H output
002C 0C402A ; Port J output
002E 0C402A ; Port J output
0030 0C402A ; Port J output
0032 0C402A ; Port J output

24 ; End
```

Operating Modes (2)

- Normal expanded-narrow & normal expanded-wide modes
 - In both forms of expanded mode, some I/O ports are used for creating a system bus
 - On HC12B32
 - Ports A and B serve as pins for address bus (ADDR<15>)
 - Ports A (and B if wide mode) as pins for multiplexed data bus
 - Ports E as pins for control bus (e.g. R/W, E cik, LSTRB)
HC12B32 Expanded Modes

- Expanded mode provides address, data, and control buses at the expense of Ports A, B and some pins in Port E

Memory Mapping in HC12B32 Expanded Modes

- In expanded-wide mode, the B32 has a multiplexed 16-bit address and data bus
 - With a 16-bit address bus, the B32 can access $2^{16} = 65,536$ bytes of data
 - With a 16-bit data bus, the B32 can access 16 bits (two bytes) in a single bus cycle
- In expanded mode, the B32 uses Port A and Port B as the multiplexed address/data bus

Accessing External Memory and Ports in Expanded (Wide) Modes

- Timing is controlled by the E clock
- When the E clock is low, the B32 places the address on the multiplexed bus
 - Port A is used for address bits 15-8
 - Port B is used for address bits 7-0
- When the E clock is high, the B32 uses the multiplexed bus for data bus
 - Port A is used for D15-D8 [data for even (high) byte]
 - Port B is used for D7-D0 [data for odd (low) byte]

Accessing External Memory and Ports in Expanded (Wide) Modes

- For example, if accessing the sixteen-bit word at address 0x4000 (the bytes at addresses 0x4000 and 0x4001)
 - Port A will access the byte at address 0x4000
 - Port B will access the byte at address 0x4001

Note: The follow example is for illustration purpose. On HC12B32 expanded modes, external memory should be mapped between $8000 - $FFFF
Accessing External Memory and Ports in Expanded (Wide) Modes

• To determine whether it should access one byte or two bytes, the B32 uses the LSTRB* and A0 lines
 – LSTRB* low: accessing the lower (odd) byte of a word
 – LSTRB* high: accessing the upper (even) byte of a word
 – A0 low: accessing the upper (even) byte of a word
 – A0 high: accessing the lower (odd) byte of a word

Accessing External Memory and Ports in Expanded (Wide) Modes

<table>
<thead>
<tr>
<th>LSTRB*</th>
<th>A0</th>
<th>Type of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td></td>
<td>Aligned: 32-bit access of an even address</td>
</tr>
<tr>
<td>0 1</td>
<td></td>
<td>8-bit access of an even address</td>
</tr>
<tr>
<td>1 0</td>
<td></td>
<td>8-bit access of an odd address</td>
</tr>
<tr>
<td>1 1</td>
<td></td>
<td>Misaligned: Not allowed on external bus</td>
</tr>
</tbody>
</table>

• ld: $4000
 – Address on bus: A0: 0 LSTRB*: 1

• ld: $4001
 – Address on bus: A0: 1 LSTRB*: 0

• Id: $4000
 – Address on bus: A0: 0 LSTRB*: 0

A Simple Parallel Input Port

• Create an input port at address 0x4000 (an even address, or high byte)

A Simple Parallel Output Port

• Create an output port at address 0x4001 (an odd address, or low byte)

An Output Port which can be Read

• Create an output port which can be read at address 0x4001 (an odd address, or low byte)

A Parallel Input/Output Port

• Create an input/output port at address 0x4001 (an odd address, or low byte)
Expanded Mode Memory

Expanded-Narrow Mode Memory

Expanded-Wide Mode Memory