EEL 4744C: Microprocessor Applications

Lecture 6

Part 2

MC68HC12 Parallel I/O

Dr. Tao Li
Reading Assignment

• Software and Hardware Engineering (new version): Chapter 11

Or
• SHE (old version): Chapter 7

And

• M68HC12 Data Sheet: Chapter 1 (1.6.8 - end), Chapter 5 and 6
Operating Modes (1)

- Selected by BKGD, MODA, MODB pins when
 \textit{RESET*} is applied \textit{(total 8, special modes allow greater access to protected control registers)}

- Normal single-chip mode
 - All I/O and memory contained within device
 - HC12B32: 32KB EEPROM, 1KB RAM
 - Self-contained except for clock source and reset circuit
 - Pros: external interfaces do not have to be designed
 - Cons: RAM capacity is quite limited and may not fit large applications
Programmer’s I/O Model

• All I/O and control of I/O is performed using 512 control registers

• Initially mapped to addresses $0000-$01FF (but may be changed via writing to special register)

• Except for a few exceptions, most I/O ports require initialization before use via programming bits in the control registers
HC12 Parallel I/O Ports

- I/O ports can be accessed just like memory (e.g. memory mapped I/O), can use various addressing modes

REGS: EQU $0000; Register Base address
PORTB: EQU $01 ; Offset to PORTB

; Read Port B
ldaa PORTB ; Direct Addressing
ldx #REGS
ldaa PORTB, x ; Indexed
ldx VECTOR
ldaa [0,x] ; Indexed-Indirect

VECTOR: DC.W PORTB ; Address of PORTB
HC12B32 Parallel I/O Ports

- Ports A and B used for I/O in single-chip mode, or multiplexed external address and data bus pins in expanded mode

- Port E used as 6 I/O lines plus IRQ* and XIRQ* interrupt pins in single-chip mode; control signals in expanded modes (more later)

- Port S used as 8 I/O lines (default), or one SCI (2 lines), one SPI (4 lines), and 2 I/O lines (more later)

- Port T used as 8 I/O lines (default) or 8 timer bits (more later)

- Port AD may be 8-bit input port (default) or used for 8 analog inputs to on-chip A/D converter (more later)
HC12 Parallel I/O Ports

• Ports C, D, F, G, H, J are not available on HC12B32 (they may appear in the examples in the textbook or lecture)
 – Read SHE (old version) pp 169-179 to obtain basic information

• We will learn ports E, S, T, and AD as well as the corresponding control bits in great detail later
Data Direction Registers

• Used to control input or output use of bits in a port (1=output, 0=input)

• When CPU reset, all registers (except a few such as in Port E) placed in input mode

• If port a mixture of input and output bits:
 – Writing to port affects only those set as outputs
 – Reading from port returns values on input bits as well as last value(s) on output bits
PORTD: EQU 5 ; PORTD address
DDRD: EQU 7 ; Data Direction Reg
OBITS: EQU %11110000 ; Bits to be output
;
 bset DDRD,OBITS ; Set direction register
;
; Output data to bits 7-4
 ldaa #%11110000
 staa PORTD

; Read data on bits 3-0
 ldaa PORTD
Pull-up Control and Reduced Drive

- Good design practice to tie unused input pins to either logic-1 or logic-0

- HC12 provides Pull-Up Control Register (PUCR) to enable pull-up resistors on any ports configured as inputs
 - on reset, all pull-up resistors are enabled

- RDRIV (Reduced Drive of I/O Lines): reduce the drive level of output pins for power saving and lower RFI (disabled on reset)
Writing HC12 I/O Software

- **Initialization:** set up the function of the ports and the direction of data flow

- **Data input/output:** read/write data

- **Synchronization:**
 - Real-time synchronization (e.g. delay loop)
 - Polled I/O
 - Interrupt (more later)
Polled I/O Example

(a) Polled Output

(b) Polled Input
Polled I/O Assembly Code

PORTJ: EQU $28 ; Port J address
PORTH: EQU $24 ; Port H address
DDRH: EQU $25 ; Port H data direction
BIT0: EQU %00000001
BIT1: EQU %00000010
O_BITS: EQU %00001111

; Initialization
; Set up PORTH[3:0] to be output
 bset DDRH,O_BITS

; Output data to Port H
; Wait until the status bit, Port J, Bit-0 is 1
SPIN1: bclr PORTJ,BIT0,SPIN1
; Now can output the data
 ldaa data1
 staa PORTH

; Input data from Port H
; Wait until the status bit, Port J, Bit-1 is 1
SPIN2: bclr PORTJ,BIT1,SPIN2
; Now can input the data
 ldaa PORTH
 staa data2

data1: DS 1
data2: DS 1
Hardware Handshaking I/O

• No dedicated h/w for this
 – use general-purpose I/O bits plus s/w similar to polling

• Unlike polling, handshaking goes both ways
Hardware Handshaking I/O Example
Handshaking I/O Assembly Code

hskiolc.asm Assembled with CASM 05/24/1998 23:35 PAGE 1

0000 1 PORTJ: EQU $28 ; Port J address
0000 2 DDRJ: EQU $29 ; Data direction Port J
0000 3 PORTH: EQU $24 ; Port H address
0000 4 DDRH: EQU $25 ; Data direction Port H
0000 5 BIT0: EQU %00000001
0000 6 BIT1: EQU %00000010
0000 7 BIT2: EQU %00000100
0000 8 BIT3: EQU %00001000
0000 9 O_BITS: EQU %00001111
10 ;
11 ; Initialization
0000 4C250F 12 bset DDRH,O_BITS ; Port H output
0000 4C290A 13 bset DDRJ,BIT1|BIT3 ; Port J-1,3 output
0000 4D280A 14 bclr PORTJ,BIT1|BIT3 ; Reset NEW_DATA READY
0000 4D2808 15 bclr PORTJ,BIT3 ; READY_FOR_NEW_DATA
16 ;
17 ; Handshaking output data to Port H
18 ; Wait until the status bit, Port J, Bit-0 is 1
000C 4F2801FC 19 SPIN1: brclr PORTJ,BIT0,SPIN1
20 ; Now can output the data
0010 B6002A 21 ldac datal
0013 5A24 22 stac PORTH
23 ; and can strobe the handshaking bit
0015 4C2802 24 bset PORTJ,BIT1
0018 4D2802 25 bclr PORTJ,BIT1
26 ;

Dr. Tao Li
; Handshaking input data from Port H
28 ; Set READY_FOR_NEW_DATA on Port J, Bit-3
001B 4C2808 29 bset _ PORTJ,BIT3
30 ; Wait until the status bit, Port J, Bit-2 is 1
001E 4F2804FC 31 SPIN2: brclr PORTJ,BIT2,SPIN2
32 ; Now can input the data
0022 9624 33 ldaa PORTH
0024 7A002B 34 staa data2
35 ; and reset the READY_FOR_NEW_DATA
0027 4D2808 36 bclr PORTJ,BIT3
37 ;
002A 38 data1: DS 1
002B 39 data2: DS 1
Operating Modes (2)

• Normal expanded-narrow & normal expanded-wide modes
 – In both forms of expanded mode, some I/O ports are used for creating a system bus
 – On HC12B32
 • Ports A and B serve as pins for address bus (ADDR_{0-15})
 • Ports A (and B if wide mode) as pins for multiplexed data bus
 • Ports E as pins for control bus (e.g. R/W*, E clk, LSTRB*)
HC12B32 Expanded Modes

- Expanded mode provides address, data, and control buses at the expense of Ports A, B and some pins in Port E

Dr. Tao Li
Memory Mapping in HC12B32
Expanded Modes
Accessing External Memory and Ports in Expanded (Wide) Modes

• In expanded-wide mode, the B32 has a multiplexed 16-bit address and data bus
 – With a 16-bit address bus, the B32 can access $2^{16} = 65,536$ bytes of data
 – With a 16-bit data bus, the B32 can access 16 bits (two bytes) in a single bus cycle

• In expanded mode, the B32 uses Port A and Port B as the multiplexed address/data bus
Accessing External Memory and Ports in Expanded (Wide) Modes

- Timing is controlled by the E clock
- When the E clock is low, the B32 places the address on the multiplexed bus
 - Port A is used for address bits 15-8
 - Port B is used for address bits 7-0
- When the E clock is high, the B32 uses the multiplexed bus for data bus
 - Port A is used for D15-D8 [data for even (high) byte]
 - Port B is used for D7-D0 [data for odd (low) byte]
Accessing External Memory and Ports in Expanded (Wide) Modes

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7000</td>
<td>EVEN BYTE</td>
</tr>
<tr>
<td>$7001</td>
<td>ODD BYTE</td>
</tr>
<tr>
<td>$7002</td>
<td>HIGH BYTE</td>
</tr>
<tr>
<td>$7003</td>
<td>LOW BYTE</td>
</tr>
<tr>
<td>$7004</td>
<td>EVEN BYTE</td>
</tr>
<tr>
<td>$7005</td>
<td>HIGH BYTE</td>
</tr>
<tr>
<td>$7006</td>
<td>LOW BYTE</td>
</tr>
<tr>
<td>$7007</td>
<td>ODD BYTE</td>
</tr>
</tbody>
</table>

- ALIGNED WORD
- MISALIGNED WORD

Dr. Tao Li
Accessing External Memory and Ports in Expanded (Wide) Modes

• For example, if accessing the sixteen-bit word at address 0x4000 (the bytes at addresses 0x4000 and 0x4001)
 – Port A will access the byte at address 0x4000
 – Port B will access the byte at address 0x4001

Note: The follow example is for illustration purpose. On HC12B32 expanded modes, external memory should be mapped between $8000 - $FFFF
To determine whether it should access one byte or two bytes, the B32 uses the LSTRB* and A0 lines

- LSTRB* low: accessing the lower (odd) byte of a word
- LSTRB* high: accessing the upper (even) byte of a word
- A0 low: accessing the upper (even) byte of a word
- A0 high: accessing the lower (odd) byte of a word
Accessing External Memory and Ports in Expanded (Wide) Modes

<table>
<thead>
<tr>
<th>LSTRB</th>
<th>A0</th>
<th>Type of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Aligned 16-bit access of an even address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accesses bytes at even address and subsequent odd address</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>8-bit access of an odd address</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>8-bit access of an even address</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Misaligned Not allowed on external bus</td>
</tr>
</tbody>
</table>

- **ldaa $4000**
 - Address on bus: \(A0: 0 \) LSTRB*: 1
- **ldaa $4001**
 - Address on bus: \(A0: 1 \) LSTRB*: 0
- **ldd $4000**
 - Address on bus: \(A0: 0 \) LSTRB*: 0
A Simple Parallel Input Port

- Create an input port at address 0x4000 (an even address, or high byte)
A Simple Parallel Output Port

- Create an output port at address 0x4001 (an odd address, or low byte)

Example: Write an 0xAA to address 0x0401

| E |
|---|---
| R/W |
| A/D | 0x4001
| ADDR | 0x??AA
| LSTRB | 0x4001
| CS_W |

Note: ADDR can be 0x4000 or 0x4001 with LSTRB = 0
Create an output port which can be read at address 0x4001 (an odd address, or low byte)
A Parallel Input/Output Port

- Create a input/output port at address 0x4001 (an odd address, or low byte)
Expanded Mode Memory
Expanded-Narrow Mode Memory

![Diagram showing the expanded-narrow mode memory with connections and signals.](image)

- **ADDR15**
- **ADDR14**
- **ECLK**
- **Address Bus** (ADDR0 - ADDR13)
- **Data Bus**
- **R/*W**
- **16kx8 RAM ($8000-$BFFF)**
- **CE, OE**
- **A0 - A13**
- **D0 - D7**

 ![Connection diagram](image)

Dr. Tao Li
32
Expanded-Wide Mode Memory

32kb RAM (addresses $0000 - $7FFF), 16 bit data bus, for Expanded Wide Mode

Diagram:
- **ADDR15**
- **ADDR0**
- **ECLK**

Address Bus (ADDR1 to ADDR14)
- **A0 - A13**
- **D0 - D7**
- **R/W**
- **CE, OE**
- **WE**

Data Bus (DATA8 - DATA15)

16kx8 RAM (Even addresses)

16kx8 RAM (Odd Addresses)

Dr. Tao Li