EEL 4744C: Microprocessor Applications

Lecture 9

Part 2
M68HC12 Serial I/O

Introduction

- Asynchronous serial communication interface (SCI), a.k.a. on-chip UART; 1 on B32, 2 on A4
- Synchronous serial peripheral interface (SPI) for high-speed synchronous serial communication
- Also a byte data link communication (BDLC) module on B32 for SAE J1850 communication in auto. applications (will not be discussed)

Basic SCI & SPI Layout

- Full-duplex, h/w parity generation, option for single-wire operation
- On-chip generator for standard bit-rates
- Transmitter and receiver double-buffered, operate independently, use same rate and format
- Supports 8- or 9-bit data, variety of flags and interrupts

Reading Assignment

- Software and Hardware Engineering (new version): Chapter 15
- SHE (old version): Chapter 11
- HC12 Data Sheet: Chapter 14
SCI Data

- Two data regs., SCnDRH and SCnDRL (n=0 on B32 and =0,1 on A4)
- SCnDRL reg. is two separate regs. at same address, one for read and one for write
- SCnDRH for MSB of 9-bit data, should be written before SCnDRL for correct data transfer
- If 8-bit data, only SCnDRL used

SCI Initialization

- Control bits TE and RE in SCnCR2 to enable transmitter and receiver on each SCI channel
- SCI operation mode must be initialized using SCnCR1
 - In addition to normal SCI operation (default), several other modes available:
 - Wired-OR mode (output pin is open-drain; needs external pullup; used in single-wire system with multiple devices connected together); controlled by WOMS control bit

SCI Initialization

- Loop mode (for testing, if rec. source bit RSRC = 0 then rec. connected internally to xmitter and thus xmitter can be disconnected from TxD pin; o/w external)

SCI Initialization

- Single-wire mode (only TxD pin(s) used, and RxD pins available for GP I/O)
 - M control bit: (‘0’ means 1 start, 8 data, and 1 stop bit; ‘1’ means 1, 9, and 1)
 - H/w to detect idle line (receive line in mark (1) state for more than one character time)
 - H/w to generate parity bit; enabled via PE bit, type (even/odd) selected by PT bit (in SCnCR1 register)
 - SBR12:SBR0 contain BR bits to select baud rate; supports standard rates (110...38400) and others; set acts as 13-bit divider of bus clock such that baud rate = bus clock / (16 x BR) (see table 11-2)
SCI Status Flags

- Several flags for polling and interrupts; all reset by reading status reg. SCNnSR1 (where each flag resides) then reading/writing next byte from/to SCNnDRL
- Transmit data reg. empty flag (TDRE): set when last char. written to SCNnDRL is xfered to output shift reg
- Transmit complete flag (TC): set when last char. completely sent from output shift reg
- Receive data reg. full flag (RDRF): set when data reg. has new data
- Idle line detected flag (IDLE): set when receive line idle

SCI Interrupts

- All reset for reuse as above
- Transmit interrupt enable (TIE) for interrupts on TDRE flag
- Transmit complete interrupt enable (TCIE) for TC flag
- Receive interrupt enable (RIE) for RDRF or OR flags (must poll in ISR to determine)
- Idle line interrupt enable (ILIE) for IDLE flag

Other SCI Issues

- Sleep and wakeup mode for multidrop applications
 - S/w on each receiver puts self to sleep (by setting RWU control bit) until wakeup
 - With each b-cast, receivers all awaken and s/w in them decodes target of message
 - Only addressed station stays awake to receive message, others resume sleep
 - When asleep, all receiver interrupts disabled until awakened by either:
 - WAKE bit = 0, a full char. of idle line (i.e. mark or ‘1’) wakes up receiver
 - WAKE bit = 1, any byte with a one in the MSB wakes it up

Other SCI Issues

- Receiver overrun error flag (OR): set when new char. rec’d before old data read by pgm
- Noise flag (NF): h/w takes 3 samples of rec’d signal near middle of each data and stop bit, and 7 during the start bit; if disagreement within any then flag is set
- Framing error (FE): set if receiver detects a space (0) instead of mark (1) during stop-bit time
- Parity error flag (PF): set if parity incorrect

Other SCI Issues

- Sleep and wakeup mode for multidrop applications
 - Note: when asleep, only SCI module is, as the CPU can continue to operate
 - CPU can awaken SCI by clearing the RWU bit, although auto. h/w typically used
Other SCI Issues

- SCI can send break char. (10-11 zeros) by pgm. writing ‘1’ into SBK bit; these chars. used on some systems to wake up the receiving end

- For any serial function not enabled, bits of Port S may be used for GP I/O

SCI Example: Initialization

```assembly
SCI Register Equates

; SCI Register Equates
; TE: EQU %00001000 Transmitter Enable
; RE: EQU %00000100 Receiver Enable
; TDRE: EQU %00000000 TX Data Reg Empty
; RDRF: EQU %00001000 RDRF Flag
; MOD: EQU %00010000 Mode bit
; PE: EQU %00000010 Parity Enable
; ODD_P: EQU %00000001 Set odd parity
; B9600: EQU !52 Baud rate = 9600
; SC0BDH: EQU $C0 Baud rate register
; SC0CR1: EQU $C2 Control register 1
; SC0CR2: EQU $C3 Control register 2
; SC0SR1: EQU $C4 Status register
; SC0DRL: EQU $C7 Data register

; Subroutine init_sci
; Initialize SCI to 1 start, 8 data and 1 stop bit, odd parity and 9600 Baud.
; Inputs: None
; Outputs: None

init_sci:
pshd ; Save D
bclr SC0CR1,MODE ; Choose odd parity and enable it
bset SC0CR1,PE|ODD_P ; Enable transmitter and receiver
bset SC0CR2,TE|RE ; Enable transmitter and receiver
ldd #B9600 std SC0BDH ; Set Baud rate
puld ; Restore x
```

SCI Example: Send Data

```assembly
SCI Register Equates

; SCI Register Equates
; TE: EQU %00001000 Transmitter Enable
; RE: EQU %00000100 Receiver Enable
; TDRE: EQU %00000000 TX Data Reg Empty
; RDRF: EQU %00001000 RDRF Flag
; MOD: EQU %00010000 Mode bit
; PE: EQU %00000010 Parity Enable
; ODD_P: EQU %00000001 Set odd parity
; B9600: EQU !52 Baud rate = 9600
; SC0BDH: EQU $C0 Baud rate register
; SC0CR1: EQU $C2 Control register 1
; SC0CR2: EQU $C3 Control register 2
; SC0SR1: EQU $C4 Status register
; SC0DRL: EQU $C7 Data register

; Subroutine sci_out
; Send SCI data
; Inputs: A register = data to send
; Outputs: None

sci_out:
; Wait until the transmit data reg is empty
spin:
brclr SC0SR1,TDRE,spin
; Output the data and reset TDRE
staa SC0DRL
rts
```

SCI Example: Check RDRF Flag

```assembly
SCI Register Equates

; SCI Register Equates
; TE: EQU %00001000 Transmitter Enable
; RE: EQU %00000100 Receiver Enable
; TDRE: EQU %00000000 TX Data Reg Empty
; RDRF: EQU %00001000 RDRF Flag
; MOD: EQU %00010000 Mode bit
; PE: EQU %00000010 Parity Enable
; ODD_P: EQU %00000001 Set odd parity
; B9600: EQU !52 Baud rate = 9600
; SC0BDH: EQU $C0 Baud rate register
; SC0CR1: EQU $C2 Control register 1
; SC0CR2: EQU $C3 Control register 2
; SC0SR1: EQU $C4 Status register
; SC0DRL: EQU $C7 Data register

; Subroutine sci_char_ready
; Check the RDRF flag
; If a character is ready, returns with C=1, the character in the A register, and the status information in the B register.
; Otherwise, C=0 and the A and B regs are unchanged.
; Inputs: None
; Outputs: A = character, Carry bit T or F

sci_char_ready:
clc ; Clear carry
; IF RDRF is set
brclr SC0SR1,RDRF,exit ; THEN the character is there
; ELSE
; Get the data
ldab SC0DRL
; Get the status
ldab SC0SR1
; Set the carry
exit:
rts
```
Synchronous Serial Communications

- Sends high-speed serial data to peripherals, other SPI-equipped MCUs or DSPs
- Up to 4Mb/s, LSB or MSB sent first, normal or open-drain output for wired-OR
- Master/slave arrangement, master provides clock (SCK) to shift data in and out
- Data xfer’d out of each shift reg. simult. so master sends to and receives data from slave

Synchronous Serial Peripheral Interface

- Transmitted data is single-buffered; s/w must await last bit shifted out before writing new; SPIF (SPI xfer complete flag) available for polling and interrupts
- Received data is buffered, so program has one char. time to read data before next arrives
- Feature for master to select slave (e.g. to use for its CS) via SS* (slave select) output signal

Parallel & Serial Peripheral Interface

SPI Layout

- PARALLEL COMMUNICATIONS
- SERIAL COMMUNICATIONS

Synchronous Serial Peripheral Interface
SPI initialization

- SPI interrupt enable (SPIE bit, 1 = enabled)
- SPI system enable (SPE bit, 1 = enabled)
- Wired-OR mode (SWOM bit, 1 = open-drain outputs)
- SPI master/slave mode select (MSTR bit, where 0 = slave and 1 = master)

SPI Master and Slave Modes

- One master unit and one or more slave units via MSTR bit on each
- Normal 2-wire mode (4 pins used on each unit, 2 of it for data)
- Bi-directional mode (3 pins used in each, only 1 for data)
 - allows unused SPI bits (PS4 on master, PS5 on slave(s)) as GP I/O signals

SPI Data Rate and Clock Formats

- Data rate set by SPR2:SPR0 prescale bits as division of bus clock from ÷2, ÷4, ..., ÷256
 - ÷2 for bus clock = 4MHz, rates from 2MHz down to 15.625 kHz
 - ÷2 for bus clock = 8MHz, rates from 4MHz down to 31.25 kHz
- SPI clock polarity select (CPOL) bit, 0 = SCK low when not shifting data, 1 = high
- SPI clock phase select (CPHA) bit determines rising/falling in concert with CPOL

SPI Clock Phases
SPI Flags and Interrupts

• All flags reset by reading SPISR register where flag resides followed by R or W access to SPI data register SP0DR
• SPI interrupt request flag (SPIF) set at end of SPI xfer; if SPIE set then SPI interrupt occurs
• Write collision error flag (WCOL) set if SP0DR written while data xfer in place; no interrupt with this flag
• Mode error flag (MODF) set if SS* pulled low while SPI in master mode (meaning some other SPI device trying to act as master and data collision may occur); if SPIE enabled then SPI interrupt occurs
• Since SPIF and MODF share same interrupt, ISR must poll to determine source